Decoding and reprogramming fungal iterative nonribosomal peptide synthetases

نویسندگان

  • Dayu Yu
  • Fuchao Xu
  • Shuwei Zhang
  • Jixun Zhan
چکیده

Nonribosomal peptide synthetases (NRPSs) assemble a large group of structurally and functionally diverse natural products. While the iterative catalytic mechanism of bacterial NRPSs is known, it remains unclear how fungal NRPSs create products of desired length. Here we show that fungal iterative NRPSs adopt an alternate incorporation strategy. Beauvericin and bassianolide synthetases have the same C1-A1-T1-C2-A2-MT-T2a-T2b-C3 domain organization. During catalysis, C3 and C2 take turns to incorporate the two biosynthetic precursors into the growing depsipeptide chain that swings between T1 and T2a/T2b with C3 cyclizing the chain when it reaches the full length. We reconstruct the total biosynthesis of beauvericin in vitro by reacting C2 and C3 with two SNAC-linked precursors and present a domain swapping approach to reprogramming these enzymes for peptides with altered lengths. These findings highlight the difference between bacterial and fungal NRPS mechanisms and provide a framework for the enzymatic synthesis of non-natural nonribosomal peptides.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting and exploiting nonribosomal peptide synthetases.

A large number of therapeutically useful cyclic and linear peptides of bacteria or fungal origin are synthesized via a template-directed, nucleic-acid-independent nonribosomal mechanism. This process is carried out by mega-enzymes called nonribosomal peptide synthetases (NRPSs). NRPSs contain repeated coordinated groups of active sites called modules, and each module is composed of several doma...

متن کامل

Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress.

Nonribosomal peptides, made by nonribosomal peptide synthetases, have diverse biological activities, including roles as fungal virulence effectors. Inspection of the genome of Cochliobolus heterostrophus, a fungal pathogen of maize and a member of a genus noted for secondary metabolite production, revealed eight multimodular nonribosomal peptide synthase (NPS) genes and three monomodular NPS-li...

متن کامل

Establishing a new methodology for genome mining and biosynthesis of polyketides and peptides through yeast molecular genetics.

Fungal genome sequencing has revealed many genes coding for biosynthetic enzymes, including polyketide synthases and nonribosomal peptide synthetases. However, characterizing these enzymes and identifying the compounds they synthesize remains a challenge, whether the genes are expressed in their original hosts or in more tractable heterologous hosts, such as yeast. Here, we developed a streamli...

متن کامل

Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi.

In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary meta...

متن کامل

Review Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi

In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary meta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017